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Abstract: Deep learning has been used for mapping retrogressive thaw slumps and other periglacial
landforms but its application is still limited to local study areas. To understand the accuracy, efficiency,
and transferability of a deep learning model (i.e., DeepLabv3+) when applied to large areas or
multiple regions, we conducted several experiments using training data from three different regions
across the Canadian Arctic. To overcome the main challenge of transferability, we used a generative
adversarial network (GAN) called CycleGAN to produce new training data in an attempt to improve
transferability. The results show that (1) data augmentation can improve the accuracy of the deep
learning model but does not guarantee transferability, (2) it is necessary to choose a good combination
of hyper-parameters (e.g., backbones and learning rate) to achieve an optimal trade-off between
accuracy and efficiency, and (3) a GAN can significantly improve the transferability if the variation
between source and target is dominated by color or general texture. Our results suggest that future
mapping of retrogressive thaw slumps should prioritize the collection of training data from regions
where a GAN cannot improve the transferability.

Keywords: DeepLab; domain adaptation; generative adversarial network; permafrost; thermokarst

1. Introduction

Increases in ground temperature and active layer thickness, coupled with elevated
summer precipitation, are altering the frequency and size of disturbances initiated by
permafrost thaw [1–4]. This intensification is concerning because thermokarst disturbances
cause hydrological and geomorphic changes impacting northern communities, ecosys-
tems, and global ecological processes [5–11]. Ice wedges in high Arctic uplands that
have remained stable for millennia are being truncated by top down thaw, which causes
ground subsidence and the formation of numerous thaw ponds [12,13]. In lake-rich low-
land areas, thermokarst processes are increasing the frequency of rapid, irreversible lake
drainage [14–16]. The rapid shift in climate in many Arctic regions has also caused a large
increase in the area affected by retrogressive thaw slumps [3,17–19]. Thaw slumps develop
in sloping terrain and consist of an ice-rich exposure or headwall and a downslope scar
area (Figure 1). As ground ice in the headwall ablates, thawed materials are transported
downslope and the scar area expands. Over annual to decadal time scales slumps can
create horseshoe-shaped depressions in the landscape.
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Figure 1. Map of the study area showing thaw slumps used as training data. (a) Willow River (WR)
Area in the Foothills of the Richardson Mountains, (b) the Jesse Moraine (JM) on Eastern Banks Island,
and (c) the Fosheim Peninsula (FP). The Oblique images in the bottom row show individual slumps
in each area: (d) Willow River (Photo: Ashley Rudy), (e) Jesse Moraine (Photo: Ashley Rudy), and
(f) the Fosheim Peninsula (Photo: Alison Cassidy).

In the Canadian Arctic, slump inventories compiled using manual digitization have
guided research on heritage conservation [20], cumulative impacts [21], carbon and nitrogen
cycling [22–26], and mercury contamination and mobility [27]. Unfortunately, slump
impacted landscapes are evolving so rapidly that it has not been possible to maintain
up-to-date inventories across the Arctic. Since these disturbances have the potential to
impact transportation infrastructure [5,28] and human land use [29,30], there is pressing a
need to improve systems for continuous detection and monitoring of these geohazards.

Automated techniques have been explored to meet the challenge of detection and moni-
toring of thaw slumps and other permafrost disturbances, but were limited to local sites or
missed many small features. Several studies used temporally dense Landsat image stacks to
identify thaw slumps [31–33] with machine learning algorithms such as random forest and
support vector machine. Rudy et al. [34] used a semi-automated method to detect permafrost
slope disturbances from multi-temporal high-resolution satellite (i.e., IKONOS) imagery. How-
ever, Landsat image stacks have a resolution of 30 m and miss many thaw slumps of small
size (<100 m × 100 m) or in an early stage of development. The semi-automated method
performed moderately well and detected 43% of permafrost slope disturbances in an area of
∼20 km2 but it is unlikely that it could be extended to a continental scale.
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Advances in image processing and classification techniques based on deep learning
are creating new opportunities to automate the detection and monitoring of thaw slumps
across large areas using high-resolution remote sensing imagery. Deep learning approaches
allow computational models to learn multi-level representations of data and have signifi-
cantly improved the state-of-the-art in image processing [35]. Several recent studies have
applied deep learning to permafrost areas to map thaw slumps [36,37] and ice-wedge
polygons [38,39]. Huang et al. [36] used a convolutional neural network (CNN) approach
to delineate thaw slumps in a homogenous study area on the Tibetan Plateau and achieved
a high accuracy. Nitze et al. [37] compared the potential strengths and limitations of three
deep learning algorithms used to map thaw slumps with PlanetScope CubeSat imagery
across six Arctic regions. This study highlighted the importance of training data and
limitations related to model transferability among regions. It is likely that similar methods
can be used to inventory slumps across even larger geographic areas, but additional case
studies are needed to test the generality of different approaches. Moreover, the balance
between accuracy and efficiency has not been fully quantified, and potential solutions for
improving the transferability need to be explored.

The objectives of this study are to assess the accuracy and efficiency of deep learning
models for mapping thaw slumps and seek to improve their transferability across the Arctic.
Specifically, we demonstrate the capability of the DeepLabv3+ deep learning model and
compare its accuracy and efficiency with eight network architectures (i.e., backbones) using
PlanetScope imagery across the Canadian Western Arctic. We evaluate the effectiveness of
different data augmentation methods to improve model accuracies. We also evaluate the
ability of a generative adversarial network (GAN) to create new training data and provide
a means of domain adaptation to improving classifier transferability.

2. Study Areas

Three study areas in Canada’s Arctic were selected for slump mapping tests: the
Willow River (WR) catchment in the foothills of the Richardson Mountains, the Jesse
Moraine (JM) on Eastern Banks Island, and the Fosheim Peninsula (FP) of Ellesmere Island
(Figure 1). These areas span the Southern Arctic (WR) and Northern Arctic (JM and FP) ter-
restrial ecozones [40,41], traversing a distance of about 2000 km, and 12 degrees of latitude
(68–80◦ N). The climate of all three study areas is characterized by long, cold winters and
short summers, with mean annual temperatures ranging from −7 (WR) to −20 ◦C (FP).
The vegetation of the Fosheim Peninsula and Jesse Moraine are strongly controlled by hy-
drology, with well-drained upland sites hosting partial cover (20–50 percent) of Salix-Dryas
tundra. Poorly drained sites at the base of slopes or in valley bottoms are dominated by a
nearly continuous cover of wet sedge meadow [41,42]. The vegetation of the Willow River
is characterized by dwarf shrub and tussock tundra at high elevations, which transitions
to upright shrub communities and open spruce woodlands at lower elevation [43]. WR
and JM lie in fluvially incised, hummocky moraine, while FP contains fine-grained marine
sediments that lie below the Holocene marine limit [43]. Sloping terrain and continuous
permafrost with high ground ice content, including massive ice [19,44,45], provide optimal
conditions for the development of retrogressive thaw slumps [46]. Increased thaw slump
activity in the last decade at all three study areas has been attributed to a combination
of recent warm summers and increasing rainfall [3,18,19,45]. Thaw slumps were mapped
within areas covering 355 km2 in WR, 350 km2 in JM, and 1065 km2 in FP.

3. Data and Methods
3.1. Satellite Images and Training Data

We downloaded PlanetScope images from Planet Labs (www.planet.com, accessed on
14 December 2020) via their Education and Research Program and chose the “Analytic_SR”
product, which has been orthorectified and converted to surface reflectance. PlanetScope
is a constellation of more than 100 CubeSats, which acquires daily images at a spatial
resolution of approximately three meters. The 16-bit images contain four bands providing
measurements in red, green, blue, and near-infrared wavelengths. All images for this

www.planet.com
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study were acquired in July and August of 2020 (Table 1). We obtained mosaic and daily
PlanetScope images, and used them for different purposes. The mosaic images provided
complete coverage for each study area and served as base maps for manually delineating
thaw slump boundaries (i.e., ground truth). Daily PlanetScope images acquired on a
specific date were used for testing the performance of the deep learning model under
different image acquisition conditions (Figure 2). To utilize all four bands in DeepLabv3+,
we converted each 4-band image to two 3-band images (RGB and nirGB) with a bit depth
of 8 bits. RGB images combined red, green, and blue bands, while nirGB images included
near-infrared, green, and blue bands. We also applied data augmentation to increase the
size and diversity of training data. Specifically we used eight options: flip, blur, crop,
scale, rotate, bright, contrast, and noise. We performed experiments to determine which
combination of these options resulted in the highest mapping accuracy.

Table 1. PlanetScope images of the three study areas.

Regions Image Type Acquisition Dates in 2020

Willow River (WR)

Mosaic 18 August

Daily 7, 8, 11, 13, 23, 70, 31 July;
18, 19, 24, 28, 29 August

Jesse Moraine (JM)
Mosaic 20 August

Daily 5, 25 July; 11, 20 August

Fosheim Peninsula (FP)
Mosaic 7 and 8 August

Daily 7, 17 July; 9 August

Figure 2. PlanetScope images (RGB) covering the Willow River (WR) demonstrating variable summer
reflectance due to different illumination conditions, haze, and cloud shadow.

Training data were obtained by manually digitizing slumps using PlanetScope mosaic
images. The final training polygons included thaw slumps (positive training data) and
other features that appeared similar to slumps (negative training data) in each of the three
study areas. Positive training data represents the boundaries of thaw slumps, and negative
training data delineates areas of land cover similar to thaw slumps. A total of 197, 262, and
162 slumps were delineated within the WR, JM, and FP study regions, respectively. Two
of our team members delineated and cross-checked the boundaries on mosaic images by
inspecting each pixel in the three study areas and cross referencing with 50 cm resolution
WorldView Imagery available through ESRI ArcGIS Online (www.arcgis.com, accessed on
16 December 2020). We initially ran a few classification iterations without negative training

www.arcgis.com
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polygons, then gradually added some negative polygons to address false positive results.
We extracted sub-images from the PlanetScope images using a buffer size of 300 m and the
corresponding raster label from the training polygons then tiled them with an overlap of
160 pixels to the size (<600 by 600 pixels) of the final training data [47].

3.2. Deep Learning Model

Automated slump delineation was completed using the DeepLabv3+ architecture [48].
This deep learning model with its state-of-the-art semantic segmentation algorithm has
been shown to outperform many others in PASCAL VOC image segmentation tasks [49].
Semantic segmentation labels each pixel in an image, thereby mapping the location and
extent of thaw slumps on satellite images. As shown in Figure 3, DeepLabv3+ consists of
an encoder and decoder module. The encoder is built on popular CNN networks (termed
as backbones) and Atrous Spatial Pyramid Pooling (ASPP). The CNN networks include
Xception-41, 65, and 71 [50] , Mobilenetv 2 & 3 [51,52], and Resnet -50 and 101 [53] that
were originally created for image classification (determine the image-level object shown
in an image), but were repurposed for semantic segmentation by replacing the last few
downsampling operators with ASPP. The numbers (e.g., 41) represent the depth of the
corresponding network architectures. The decoder module recovers object segmentation
details from low-level features and the encoder features. Eventually, for each input image,
DeepLabv3+ outputs a labelled image (each pixel has a class id) of the same size.

Figure 3. The architecture of Deeplabv3+ (modified from [48]).

3.3. Demonstrating the Capability of DeepLabv3+

To demonstrate the capability of DeepLabv3+ for mapping thaw slumps in several
study areas, instead of only one homogeneous region [36] with available training data, we
followed the procedure in [36] to delineate individual thaw slumps and calculate the preci-
sion, recall, and F1 score [36] for each region. The precision and recall were calculated after
the post-processing of mapped polygons, and the threshold of polygon-based intersection
over union for determining true positive was 0.5. We trained a DeepLabv3+ model using
training data from the three areas with a learning rate of 0.014, a Xception65 backbone, and
five data augmentation options (blur, crop, bright, contrast, and noise). These settings were
derived from the experiments examining data augmentation, different backbones, and
other hyper-parameters (see Section 3.4). We followed the steps detailed in [47] including
tiling, predicting, and polygonizing, to generate polygons delineating the boundary of thaw
slumps. In the post-processing step, we set a lower area threshold, taking into consideration
the resolution of PlanetScope images (i.e., 3 m), to remove mapped polygons smaller than
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900 m2. We also utilized the topographic characteristics of thaw slumps to remove some
false positives, as detailed in the next paragraph.

We removed mapped polygons with a slope smaller than one degree and those
containing an area with decreasing elevation less than 16 m2 by utilizing high-resolution
(2 m) ArcticDEM elevation data [54]. We used the mosaic version of the ArcticDEM to
calculate the mean slope within all slumps in the training data and used this to set a
threshold for minimum slope (one degree) that effectively removed false positives. We did
not set a threshold for maximum slope because terrain may have been disturbed before
acquiring elevation data and shows a steep or even vertical headwall. False positives also
were removed by calculating the changes in elevation over time using the strip version of
ArcticDEM, which contains data from multiple time periods. We calculated the change
in elevation using the oldest and most recent raster available for each pixel. Based on
these calculations we generated binary rasters showing regions where elevation decreased
(termed reduction zones) by setting a threshold of −0.5 m. For each mapped polygon,
if there was a reduction zone greater than 16 m2 within it or its 50-m buffer zone, we
considered the polygon a thaw slump; otherwise, we deemed it to be a false positive.

3.4. Accessing the Accuracy and Efficiency of the Model

To assess the accuracy and efficiency of DeepLabv3+, we trained it with different
backbones and other hyper-parameters by using PlanetScope images and training poly-
gons derived from manual mapping. Instead of training the model from scratch, which
would require significant computer resources and several weeks for each experiment, we
fine-tuned the pre-trained models released by the DeepLab team (https://github.com/
tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md, accessed on
20 March 2020). We used the end-to-end training strategy to fine-tune the models, so all
the layers would be fine-tuned. As reported by [48,55], model performance and efficiency
vary significantly among different backbones. Therefore, we conducted experiments using
different backbones and other hyper-parameters including learning rate and batch size for
mapping thaw slumps. We used an open-source software package called Ray Tune [56]
with a grid search strategy to run these experiments. For each experiment, we trained
up to 30,000 iterations using 90% of the training data and retaining 10% for validation.
During training, if model accuracy (measured using pIOU, as described in Equation (1))
did not improve after five evaluations, we stopped the training to prevent overfitting and
save training time. After training, we used test data derived from images acquired on
other dates or in other regions, but not included in the training data to evaluate model
transferability. We used pixel-wise intersection over union (pIOU) to evaluate the accuracy
of trained models:

pIOU =
G ∩ P
G ∪ P

(1)

where G is the ground truth label raster and P is the predicted raster. Since the model
only includes two classes (thaw slump and background) in the semantic segmentation task,
and their areas are highly imbalanced (slumps cover less than 10% of each study area),
we only calculated the pIOU for thaw slump class as an indicator of model performance.
Specifically, we used all pixels with the class of thaw slumps in G and P to calculate pIOU.
This is different from many studies in which the mean value of pIOU is calculated across
many classes (termed as mIOU). Unless stated otherwise, pIOU refers to the pixel-wise
IOU of thaw slumps. pIOU assesses outputs from deep learning models and is not affected
by any operations in the post-processing (Section 3.3) such as removing small mapped
polygons. We ran two groups of experiments using different data augmentation options
and hyper-parameters.

1. Data Augmentation Experiments. To save computing time, we restricted these
experiments to the Willow River region and ran 255 (i.e., ∑8

r=1 C(8, r)) experiments using
all possible combinations of the eight data augmentation options. Each option was used in
128 experiments.

https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
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2. Hyper-parameter Experiments. We also ran hyper-parameter experiments to
explore trade-offs between model accuracy and efficiency. We merged the training data
from the three study areas and applied data augmentation derived from group one (i.e.,
blur, crop, bright, contrast, and noise), then ran experiments of up to 30,000 iterations
using different combinations of hyper-parameters including: (1) backbone (eight in total),
(2) learning rates (0.007, 0.014, 0.021, 0.28), and (3) batch size (8, 16, 32, 48, 96), as these are
three parameters that can significantly affect model accuracy and efficiency.

3.5. Using Domain Adaptation to Improving Transferability

To improve the transferability of the deep learning model for predicting thaw slumps
using images acquired from different dates or regions, we adopted a generative adversarial
network to generate new training data, as a method for domain adaptation. As creating
training data for semantic segmentation is time consuming and requires expert mappers,
domain adaptation has been used in many computer vision applications to tackle the
problems of limited training data [57]. The goal of domain adaptation is to train algorithms
on the data in the source domain and secure a good accuracy on the data in the target
domain that is significantly different from the source [58].

Source and target domains differ among our study areas because: (1) different regions
have different slump morphology, dominant vegetation, topography, and atmospheric
conditions, (2) slump headwall expansion ranging from 1–100 m per year can significantly
alter the extent of disturbances [28,59], and (3) PlanetScope images acquired on different
dates within a single region are highly variable (Figure 2). We consider the mosaic images
(Table 1) as the data in the source domains and daily images as the one the target domains.
Usually, a GAN contains a generator and a discriminator that compete with each other
during training [60]. The generator produces fake images showing scenes that do not exist,
and the discriminator distinguishes fake between real images (i.e., training images). After
adequate training, the discriminator should not be able to tell the difference between fake
and real images. In this study we used a well-trained generator to produce images that are
similar to the images in the target domains.

We chose images in the source and target domains and used CycleGAN to translate
them from one domain to another, as shown in Figure 4. CycleGAN is a state-of-the-art
GAN framework that can successfully translate images from one domain to another [61].
CycleGAN has two translating functions G: X->Y and F: Y->X (Figure 4) and uses two
discriminators (not shown) to encourage G to produce G(X) images indistinguishable from
domain Y and F(Y) images indistinguishable from domain X, respectively. To create source
and target images, we extracted sub-images and the corresponding label raster, then used
the sub-images and target images as training data for CycleGAN. We adopted the code
published by the CycleGAN’s authors and modified them for remote sensing data to emu-
late projection and tiling (github.com/yghlc/contrastive-unpaired-translation, accessed
on 25 October 2021). We followed standard training protocol to train the CycleGAN up
to 200 epochs as suggested by [61]. During training, we also monitored the output of
CycleGAN and ensured that generated images appeared reasonable in the later stage of
training. We used the well-trained translating function G to convert the sub-images into
domain Y, then copied the corresponding label rasters, which created new training data
that have the same distribution of domain Y and would be used to train DeepLabv3+.

github.com/yghlc/contrastive-unpaired-translation
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Figure 4. Flowchart showing the CycleGAN workflow used to generate new training data.

To evaluate the effectiveness of CycleGAN for domain adaptation and to understand
its potential limitations, we conducted several experiments to test the temporal and spatial
transferability of our deep learning model. For each study area, we conducted experiments
to test the temporal transferability by using mosaic images as source images and other
daily images as target images. To test the spatial transferability, we used the mosaic images
of two study areas as source images and the remaining study area as target images. We
also split each mosaic image into two roughly equal areas, then used half of the image as
source images and the other half as target. In all experiments, we calculated the pIOU and
compared the results with and without domain adaptation.

4. Results
4.1. Mapped Polygons of Thaw Slumps

The well-trained deep learning model (Section 3.3) accurately delineated the bound-
aries of thaw slumps and achieved a high F1 score. As shown in Figure 5, the deep-learning
model delineated most thaw slump boundaries included in the ground truth data, indicat-
ing that the deep learning algorithm has the capability to represent thaw slump features
in various regions. The F1 scores ranged from 0.676 to 0.849 for different images of the
three study areas (Table 2). For each study area, the F1 score from nirGB images was higher
than those from the RGB images, indicating that nirGB images are better for mapping thaw
slumps in these regions.

Table 2. The accuracy of mapped polygons for three study areas (RGB and nirGB). The highest F1
score in each study region is shown in bold.

Region (Image) True
Positive

False
Positive

False
Negative Precision Recall F1-Score

Jesse Moraine (nirGB) 219 35 43 0.862 0.836 0.849
Jesse Moraine (RGB) 206 46 56 0.817 0.786 0.802
Fosheim Peninsula (nirGB) 108 19 54 0.850 0.667 0.747
Fosheim Peninsula (RGB) 97 28 65 0.776 0.599 0.676
Willow River (nirGB) 154 29 43 0.842 0.782 0.811
Willow River (RGB) 148 28 49 0.841 0.751 0.794
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Figure 5. Mapped polygons in the three study areas. (a–c) are spatial distributions of mapped
polygons for Willow River (WR), Jesse Moraine (JM), and Fosheim Peninsula (FP), respectively.
(d–f) are enlargements of the regions in the blue rectangles in (a–c), respectively. The background of
(a,d) are RGB images and others are nirGB images.

4.2. Effectiveness of Different Data Augmentation Options

The 255 trained models showed similar accuracy over the validation dataset, but
had variable accuracy over the different test datasets. Each data augmentation option
was used 128 times among the 255 experiments and achieved a similar mean (∼0.83),
maximum (∼0.85), and minimum (∼0.80) pIOU on the validation dataset derived from the
WR region (Table 3). The maximum differences among the pIOUs of the eight different data
augmentation options was within 0.001. This indicates that the trained model performs
similarly on the validation dataset regardless of what combination of data augmentation
options are used. Over the test datasets, the mean pIOU ranged from 0.06 to 0.78, while the
max pIOU ranged from 0.20 to 0.79 (Table 4). The mean and maximum pIOU over the 0818
test dataset (#15 and #16 in Table 4) were close to the pIOU over validation dataset because
the mosaic image in the WR region is also derived from images capture on 18 August. One
interesting result is that the pIOU for models using nirGB images was consistently greater
than those of the RGB ones, even though we trained the models after merging nirGB and
RGB images. This suggests that the near-infrared band is more effective for identifying
thaw slumps in the WR region where we completed this analysis (similar to Section 4.1).

Table 3. Accuracy of deep learning models using different data augmentation options. Table shows
the mean, max, and min pIOU of validation dataset.

Augmentation Option
Accuracy Statistics

Mean pIOU Max pIOU Min pIOU

flip 0.8263 0.845 0.7987
blur 0.8295 0.8499 0.8074
crop 0.8307 0.8499 0.8088
scale 0.8291 0.8486 0.7987
rotate 0.8222 0.8481 0.7984
bright 0.8282 0.8499 0.8074

contrast 0.8288 0.8499 0.7987
noise 0.8273 0.8499 0.7987
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Table 4. Accuracy of deep learning models based on different test datasets. The table shows the mean
and max pIOU of each test dataset when using the 255 models trained with different data augmentation
options. The last column shows what data augmentation options were used in the model that achieved
the maximum pIOU. Image acquisition dates are in the format of month day (e.g., 0708 means July 8).

# Image Dates 3-Band Mean pIOU Max pIOU Options Used (Max pIOU)

1 0707 nirGB 0.4260 0.5018 flip, blur, scale, bright, contrast, noise
2 RGB 0.1112 0.2685 crop, contrast, noise

3 0708 nirGB 0.5864 0.6741 blur, crop, bright, contrast, noise
4 RGB 0.5746 0.6493 blur, crop, scale, bright, noise

5 0711 nirGB 0.5598 0.6100 blur, crop, scale, bright, contrast, noise
6 RGB 0.5054 0.5677 flip, blur, crop, bright

7 0713 nirGB 0.4704 0.5382 blur, scale, bright, contrast, noise
8 RGB 0.3214 0.4481 crop, bright, noise

9 0723 nirGB 0.6746 0.7232 blur, crop, scale, contrast, noise
10 RGB 0.5630 0.6656 crop, contrast, noise

11 0730 nirGB 0.5669 0.6462 blur, scale, bright, contrast, noise
12 RGB 0.1966 0.3542 crop, contrast, noise

13 0731 nirGB 0.5354 0.6010 blur, rotate, bright, contrast, noise
14 RGB 0.0622 0.1980 blur, crop, rotate, bright, noise

15 0818 nirGB 0.7812 0.7927 flip, blur, crop, scale, rotate, contrast
16 RGB 0.7759 0.7891 flip, scale, contrast

17 0819 nirGB 0.1740 0.3474 flip, crop, rotate, bright, contrast, noise

18 0824 nirGB 0.1169 0.2984 crop
19 RGB 0.1301 0.2375 flip, scale, bright, contrast, noise

20 0828 nirGB 0.4578 0.5452 crop, bright, contrast, noise
21 RGB 0.1773 0.2774 crop, contrast, noise

22 0829 nirGB 0.4875 0.5999 crop, bright, contrast, noise
23 RGB 0.2636 0.3725 crop, contrast, noise

In data augmentation tests using imagery obtained on different days, the trained model
that achieved the maximum pIOU used a different combination of data augmentation options,
as shown in Table 4. Despite different data augmentation options among models, there were
some that consistently contributed to the models that achieved maximum pIOU (Figure 6).
For example, ‘noise’ was used 19 times while ‘rotate’ was only used 4 times, indicating that
adding noise to training images is better than rotation for improving transferability. The top
five options were ‘noise’ (19), ‘contrast’ (18), ‘crop’ (17), ‘bright’ (14), and ‘blur’ (11).

Figure 6. Frequency of each data augmentation option used in trained models reaching maximum
pIOU in test datasets acquired on different dates (the last column in Table 4).
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4.3. Accuracy and Efficiency When Using Different Hyper-Parameters

The accuracy, training time, and prediction time required when using different hyper-
parameters were 0.675–0.844, 0.84–11.32 h, and 0.52–9.79 h, respectively (Figure 7 and
Table 5). In total, 160 experiments using different combinations of backbones, learn-
ing rates, and batch size were performed but only 47 of these were successful because:
(1) some experiments with inappropriate learning rates ended in divergent training loss and
(2) some combinations were limited by GPU memory (32 GB, Tesla P100 × 2). The pIOU
calculated using the validation dataset of these 47 experiments varied from 0.675 to 0.844,
and training time required ranged from 0.84 and 11.32 h. The processing time required to
make predictions across the three study areas ranged from 0.52 to 9.79 h (Table 5). Exper-
iments with Xception achieved pIOU between 0.798 and 0.832, and but the larger depth
of this network required more GPU memory (i.e., smaller batch size) and more training
time (Figure 7a–c). A larger learning rate resulted in higher pIOU if the training was not
divergent (Figure 7). A larger batch size generally required more training time but this did
not guarantee improved pIOU (Figure 7b). Resnet also achieved a high pIOU, comparable
to Xception, except for two experiments (Figure 7d,e). Compared with Resnet_v1_101,
Resnet_v1_50 allowed larger batch size and achieved higher pIOU. Figure 7f,g show that
MobileNet required less training time, but resulted in lower pIOU. MobileNetv3_large
could also achieve pIOU that was similar to Xception and Resnet (Figure 7h).

Figure 7. Accuracy of eight backbones and GPU time of different computational backbones used to
run the DeepLab slump model. (a–h) show the accuracies of different backbones. Accuracy measured
as pixel-wise intersection over union (pIOU) on the validation dataset and training time of eight
backbones. “lr” is learning rate and “bs” is batch size. Y-axis is pIOU and X-axis hours.
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Table 5. Computational time for prediction within three study areas using RGB and nirGB images.

# Backbone Prediction
Time (hours)

1 Xception41 6.78
2 Xception65 9.29
3 Xception71 9.79
4 Resnet_v1_101 5.83
5 Resnet_v1_50 3.82
6 Mobilenetv2 1.79
7 Mobilenetv3_large 0.64
8 Mobilenetv3_small 0.52

4.4. Translated Images and Improvement Due to Domain Adaptation

Our experiments showed that CycleGAN can effectively translate images from one
domain to another but may introduce some artifacts (Figure 8). Comparing the translated
images in Figure 8b–d and PlanetScope images acquired on different dates in Figure 8e–g,
showed that CycleGAN successfully translated the source image (Figure 8a) into the corre-
sponding domains using different well-trained generators and indicates that CycleGAN
has the capability for domain adaptation. However, it may also introduce artifacts as shown
in Figure 8d whereby the strong texture within the extent of thaw slumps does not exist in
the source or target images.

Figure 8. Source and translated images from the WR region: (a) is a sub-image from a source domain
(the mosaic image), and (b–d) are translated images by different well-trained CycleGAN models.
(e–g) are the corresponding target images. The numbers at the top or each image (e.g., 0708) show
the acquisition dates of images in target domains.

When the difference between the source and target domain was too large, CycleGAN
generated images that had similar color to target images but slump morphology was quite
different (Figure 9). Comparisons of images from the source and target domains showed
that the distance between these two domains was quite large, unlike the distance due
to different acquisition dates in the same regions (Figure 8). Due to the large distance,
CycleGAN produced translated images of thaw slumps (Figure 9c,d,g,h) that could be
quite different from the features of thaw slumps in the target domain.
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Figure 9. Sub-images from source (a,b,e,f) and target (i,j) domains, and translated sub-images
(c,d,g,h). (c,d) were translated from (a,b), respectively, and (g,h) were translated from (e,f), respec-
tively. The source domains are from two study areas (Willow River and Fosheim Peninsula) and the
target domain is from the Jesse Morain.

Applying GAN for domain adaptation in experiments using images acquired on
different dates resulted in some significant improvements in the pIOU. In the WR region,
the improvement in pIOU with domain adaptation ranged from 0.01 to 0.55 (Figure 10a,d).
The largest improvements in pIOU in these experiments involved images adapted from the
target domain, while models using images from the source domain were largely unchanged.
For example, the pIOU of mosaic images from August 18th remained the same or improved
a little because these two are in the source domain, while other improvements were larger
because they are in the target domains. In the JM and FP regions, domain adaptation
resulted in similar improvements in pIOU (Figure 10b,c,e,f). A small improvement (<0.1) of
pIOU for mosaic images in the three regions likely resulted from the larger training dataset
when using CycleGAN to add new training data.

Experiments using two different study areas as the source domain and the remaining
one as the target domain showed variable results, with both improvement and declines in
accuracy. In the experiment of using the JM and FP as the source domain and the WR as target
domain (Figure 11a,d), the pIOU for the RGB image declined by 0.09 (from 0.16 to 0.07), but
the nirGB image showed an increase in accuracy of 0.26 (from 0.09 to 0.35). In the other two
experiments (Figure 11b,c,e,f), all models showed negligible improvements in pIOU, except
the JM region (Figure 11e). Experiments using different portions of images in one study area
also showed that domain adaptation resulted in limited improvement (Figure 12). This is
likely because the distance between two domains is quite large. Although CycleGAN can
produce images that have similar color in the target domain, the thaw slumps in these images
are morphologically or structurally distinct from the ones in the target domain, potentially
confusing the deep learning model during training.
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Figure 10. Comparison of the accuracy (pIOU) between experiments with and without GAN domain
adaptation for images acquired on different dates. (a–f) show the accuracies of different regions using
RGB and nirGB images. All images are from 2020 and the numbers on the x-axis (e.g., 0730) represent
the acquisition month (e.g., 07) and day (e.g., 30).

Figure 11. Comparison of the accuracy (pIOU) among experiments with and without GAN domain
adaptation for images acquired in different study areas. (a–f) show the accuracies of different
experiments. WR: Willow River, JM: Jesse Moraine, FP: Fosheim Peninsula.
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Figure 12. Comparison of the accuracy (pIOU) among experiments with and without GAN domain
adaptation for different parts of the images in one region. (a–c) show the accuracies of different
experiments.

5. Discussion
5.1. The Performance of the Deep Learning Model

DeepLabv3+ demonstrated strong capability to represent thaw slumps from diverse
regions using images acquired under different conditions. We trained one model for three
study areas and used it to delineate thaw slumps (Section 3.3). The results (Section 4.1)
show that the model performs quite well, indicating that with sufficient training data deep
learning can be used to map slumps at continental scales. As shown in [36], deep-learning-
based boundaries closely matched manually mapped ones, suggesting that DeepLabv3+
can be used to delineate the boundaries of thaw slumps from multi-temporal images for
change detection.

Our analysis shows that using different combinations of hyper-parameters (backbones,
learning rates, and batch size, etc.) strongly affected both the model’s accuracy and efficiency.
High accuracy is typically a priority when mapping geohazards, but efficiency is also an
important consideration when handling datasets covering large spatial extents. As presented
in Figure 7, some of the backbones resulted in a smaller pIOU than others, but their efficiency
was much higher (e.g., Mobilenetv3_large) owing to a simpler but less capable architecture.
Therefore, the trade-off between accuracy and efficiency should be considered for any mapping
application, especially when very large datasets must be processed.

Our analysis shows that transferability is a major challenge when applying deep
learning models for slumps to new images acquired in different times or regions. For
example, the trained model achieved pIOU of around 0.8 over the validation dataset
(Table 3), but the pIOU ranged from around 0.1 to 0.8 (Table 4) when the model was applied
to other images and other dates, despite the application of data augmentation to increase
the volume and diversity of training data. In terms of spatial transferability, those models
trained using data from two of our study areas to delineate slumps in the third all had
pIOUs smaller than 0.16 or even zero, indicating that they could not be reliably applied to
areas without local training data.

5.2. Strategies for Improving Transferability

A lack of training data is a common issue in deep learning applications, especially for
mapping tasks in permafrost areas. Our analysis shows that data augmentation can improve
the transferability of deep learning models in certain circumstances. Data augmentation
can randomly increase the diversity of training data and balance examples among different
classes, but does not guarantee improvements in transferability. As shown in Figure 6, some
augmentation options such as noise and contrast that modify images by changing color
or adding noise are more useful than others (e.g., rotate). A possible reason is that these
options increased the diversity of image colors and allowed trained models to correctly
classify thaw slumps in the test datasets that were acquired under different illumination
and atmospheric conditions. This indicates that different domains require different data
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augmentation options for improving the transferability or generalization on test data. It is also
possible to automatically search for the best combination or strategy of data augmentation
options within a designed space [62], but this requires expensive computing resources.

Another strategy for improving the transferability of deep learning models is to use
GANs, but this may fail under certain circumstances. GANs can produce translated images
that have similar features in target domains, such as thaw slumps in a new region or images
acquired on a new date. During training, large differences in color or texture between source
and target domains, including translated images, may improve the mapping accuracy. As
shown in Figure 10, images for the same regions, but acquired on different dates, tend to
fit this condition and are suitable for adopting a GAN for adding new training data. A
GAN also may produce some unexpected, translated images when the distance between
source and target domains is large in relation to slump color, texture, and morphology.
For example, in Figure 9c, the translated color inside the slump is white although its
surroundings are similar to what shown in Figure 9i. In Figure 9h, an anomalous black
feature is produced by the GAN, and the slump also is modified significantly, especially
the slump floor, making visual features of the slump unclear. These unnatural features
or artifacts are not helpful for improving the transferability of deep learning models as
shown in Figures 11 and 12. Instead, these unnatural features may confuse deep learning
models and even lower their performance. Based on the results presented in Section 4.4,
we conclude that GANs are a useful approach for improving temporal, but not spatial
transferability.

5.3. Mapping Practice with Deep Learning

Our results suggest that deep learning models designed to map the boundaries of slumps
face the fundamental challenge of spatial and temporal transferability. Given the impact that
these issues have on model accuracy, we suggest that mapping initiatives covering multiple
regions and time periods should focus on identification rather than delineation. Locating
and delineating thaw slumps should be considered as two different objectives, although
DeepLabv3+ can output both at the same time. When mapping across large spatial extents,
the locations of unknown thaw slumps should be the priority of automated mapping. In this
scenario, the main challenges include processing of large datasets and the transferability of
the trained model due to variability in ecosystems and image properties. We recommend
that analysts select automated mapping tools to fit the project objectives. For example, for
continental-scale inventories, employing a backbone with high efficiency and good accuracy
as shown in Figure 7 may be the best approach. In scenarios where the boundaries of thaw
slumps are important, such as monitoring slump expansion, manual delineation may be a
better approach if the number of thaw slumps is manageable.

A practical approach is necessary for handling false positives and false negatives from
automated mapping algorithms. False positives and false negatives are always encountered.
While the number of misclassifications can be relatively small, they can lead to uncertainties
and concerns in any downstream analysis. Many factors can lead to false positives and
negatives, including (1) uncertainties in the training data and ground truth, (2) imbalance
between the classes among training data, and (3) the difference of data distribution between
training data and images for prediction. From a technical perspective, reducing the number
of false positives and negatives is the goal of many efforts in algorithm development. One
practical approach that can reduce the number of false negatives is iterative mapping:
performing automated mapping and manual validation in multiple iterations until no
new thaw slumps are identified [63]. However, such efforts may not be necessary if the
downstream analysis can tolerate some level of mapping uncertainty.

To apply deep learning models at a continental scale, data augmentation, GANs,
and additional training data are likely to help overcome the challenge of transferability.
Data augmentation should be the first approach to consider for improving transferability
as it is the simplest and can be performed during training. However, it is likely that
GANs will need to be combined with additional training data, as GANs can improve
the transferability of deep learning models under certain conditions, while additional
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training data are preferable if translating images covering different ecosystems is beyond
the GAN’s capabilities. For example, we suggest dividing the entire mapping region into
many sub-regions based on their ecosystem types, collecting ground truth from some of
the sub-regions, then conducting GAN experiments to test the transferability. Similar to
the iterative mapping described in [63], this approach could be used to gradually collect
additional training data from more sub-regions while running the GAN experiments. Using
this strategy, we can build a deep learning model to map thaw slumps at the continental
scale, and monitor changes in extent over time.

6. Conclusions

We conducted experiments to understand the accuracy, efficiency, and transferability
of a deep learning model (i.e., DeepLabv3+) for mapping retrogressive thaw slumps in three,
widely separated study regions in the Canadian Arctic. The results of our experiments
show that: (1) different augmentation options can improve the size and diversity of training
data, resulting in improved performance of the deep learning model, but may not be able
to improve its transferability if the options do not narrow the distribution gap between
training and test data; (2) different combinations of hyper-parameters (e.g., backbone,
learning rate, and batch size) can affect both the accuracy and efficiency of the deep learning
model; (3) some backbones (e.g., Mobilenetv3_large) have lower accuracy (i.e., pIOU) than
others but much greater efficiency, suggesting that they would be suitable for large datasets;
(4) using a GAN for domain adaptation can significantly improve the transferability of
the deep learning model if the distance between source and target domain is within the
color difference or changes of general texture. The deep learning model for mapping thaw
slumps performs very well in regions with training data, but performance is variable when
the model is applied to a new region. GANs provide an approach to overcome the issue of
transferability, but may fail if the distance between source and target images is too large,
suggesting that training data from the new region are necessary. Our findings provide
guidance on how to collect training data for the purpose of global mapping. We suggest
dividing large study regions into many sub-regions based on ecosystem type, and testing
the transferability to determine which subregions require additional training data.
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